Computational methods
for modeling
rare events

Maria Cameron
University of Maryland, College Park, MD

ANSRE MURI FA9550-20-1-0397/

Kickoff 02/16/2021
1



Agenda

Microscopic models for material fracture (joint project

with Z. Suo’s group)

Maodel reduction for chemical reaction networks (joint

project with E. Reed’s group)

Systems of interacting particles: aggregation, dissociation,
cluster rearrangements

Computing quasipotentials, escape paths and expected
escape times in nongradient SDEs



The fracture quest

Joint work with Z. Suo’s group
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What 1s going on?
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Aggregation and dynamics of

[Lennard-Jones clusters
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Adequate for rare gases:
Ar, Kr, Xe, Rn

Often used for modeling
interaction of other spherical
parfticles.

| Large dafasets are available thanks
o to Waless group (Cambridge, UK).



0n
=EE

DIFFICULTIES IN MODELING THE DYNAMICS
OF LJ CLUSTERS

@ High dimensionality:
3n coordinates, 3n momenta

® Long waiting time in
direct simulations:
structural transitions occur rarely
on the timescale of the system

@ Large range of ftimescales
for various transition processes
LJ7s




Map energy landscape onto
a continuous-time Markov chain (stochastic network)
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Joint work with E. Vanden-Eijnden, 2014 e 43% 3
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1.J75 Joint work with T. Gan, 2016
Laraest auasi-invariant sets ( > 100 local minima)
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Asymptotic spectral analysis and
finite temperature continuation
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Van de Waal’s hypothesis

Mass spectrography by electron or X-ray diffraction (since 1980s)

Results: clusters with < ~1500 atoms have icosahedral packing;
larger clusters have FCC packing

% D
Van de Waal, PRL, 1996

No Evidence for Size-Dependent Icosahedral —> FCC Structural Transition in Rare-Gas Clusters

Faulty face-centered cubic layers grow on icosahedral core
\_ e

Experimental confirmation:
Kovalenko, Solnyshkin, Verkhovtseva, Low Temp Phys, 2000
On the mechanism of transformation of icosahedral rare-gas clusters into FCC aggregations
The experimental results correlate with the calculation if it is
assumed that the clusters have a face-centered cubic structure
with a constant number of intersecting stacking faults.
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LLJ6 — 14 aggregation/deformation network

Y. Forman, S. Sousa and M. Cameron (REU 2016)
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Attachment does mixing

A normalized RMS deviations from the invariant distributions
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Perspectives

Adapt the developed techniques to coarse-graining
of chemical reaction networks

Importance sampling of conﬁgurations
Aﬂowing dissociations of particles from clusters

Other kinds of interacting particles, e.g. sticky
particles



Computational methods for
analysis of large deviations 1n

SDEs



Quasipotential for nongradient SDEs

dx = b(x)dt + o(x)v/edw

Biological and ecological models

+ Genetic switches

Lambda Phage (Shea et al. (1980s), Aurell
and Sneppel (2002)), 2D

Two-state gene expression model with
positive feedback (Lv et al. 2014), 3D

* Population dynamics

Dynamics of savanna landscapes (Touboul
et al. 2017), 3D or 4D

Consumer-resource model (Collie &
Spencer (1994), Steele and Henderson
(1981)), 2D
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Gradient vs nongradient SDEs

dx = —VV(z)dt + /28 1dw dr = b(x)dt + o(x)v/edw
Potential /(x) 1s given. It allows Potential V(x) does not
us to predict max likelihood exist. We compute
transition paths and rates. the quasipotential and predict

escape path and rates.




Approach

Solve the optimal control problem on mesh:

Eir— i%f{S(w) | (0) € A,9(L) = z} where

S / @IS~ (@) 1S @) — (&, b)) 5t (w)ds,
() = o()o() '

Ordered line integral methods
(OLIMs) &

(Joint work with Dahiya, Yang, Potter, 2017 —2019)
ol .

Take VU4(x), shoot max likelihood
escape paths.
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Flagship examples

3D genetic switch model with Genetic switch in A phage

positive feedback (Li et al, 2014) ¢Aurell-Sneppek 2002)
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Lorenz’63 with small white noise. p = 24.4

From the strange attractor to stable equilibria: which way we go?
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Perspectives

Further enhancement of quasipotential solvers (work in
progress)

Mechanical systems: inertia, weak external periodic
forcing, small white noise (or bounded magnitude noise)

Going to higher dimensions. Approach: neural
networks, point clouds.

Applications



My research group

e PhD students

* Manyuan Tao (started to work on the fracture project)

* Luke Evans (currently working on computing committors by means of
diffusion maps in the context of chemical physics applications; will be
involved into chemical network model reduction project)

* Nicholas Paskal (enhancement of quasipotential solvers: adaptive stencil
refinement + Hermite interpolation), will graduate in Summer 2021

e Postdoc

* Christopher Moakler (UNC, Physics, advisor K. Newhall, PhD May
2021 expected, will join my group in August 2021)

* Acknowledgement: MURI FA9550-20-1-0397
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