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Goal:

This talk has three objectives to discuss:
1) The role of robustness and the impact of model error?

2) The proposed approch that we’ll follow.
3) Challenges and opportunities.
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The Role of Robustness and Impact of Model Error

“All models are wrong, but some are useful”G. Box (1976) JASA.

At the hearth of G. Box’s discussion is the trade-off between
fidelity and tractability.

This observation is applicable to every model,
in extreme events we are particularly exposed by data scarcity.
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The Role of Robustness in Rare Event Analysis...

Example: Extreme Value Theory (EVT)

Mn = max {X1, ...,Xn} ≈ anZ + bn, (1)

where an, bn are deterministic sequences and Z is (known!)
generalized extreme value distribution.

EVT is used to extrapolate quantiles since an and bn can be
estimated by maximum likelihood and Z has a parametric form.

But (1) involves assumptions that are impossible to verify and/or
depending on fine (hard to learn) structure in the distribution of Xi .

Assumptions sometimes fail to hold (e.g. geometric or Poisson data).

Consequence: unexpected failures.
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Simulated Data

Data X = Y + 50I (Y > 5) where P (Y > y) = (1+ y)−1.1 (i.e.
mixtures) estimate 1/1000 tail quantile of X . Simulated data 2,000 i.i.d.
samples of X .

Figure: Block size vs 1/1000 tail quantile.

B., He and Murthy (2020):
https://doi-org/10.1007/s10687-019-00371-1
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Need for Robustness: Academic Response Basel 3.5 (2014)

"In its broadest sense, robustness has to do with (in)sensitivity to
underlying model deviations and/or data changes. Furthermore, here, a
whole new field of research is opening up; at the moment, it is diffi cult to

point to the right approach."

Robustness:
insensitivity of decisions / inference to model error or data changes

trying to minimize the cost of such insensitivity.
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Elements of Distributionally Robust Analysis

Distributionally Robust Performance Analysis

min
θ

max
D (P ,P0)≤δ

EP (f (X , θ))

f (·) <—quantity of interest (measures risk).
X <— stochastic object of interest.

θ <—decision variable to minimize risk.

P0 <—benchmark model (wrong but simple, balances tractability &
reality).

Uδ = {P : D (P,P0) ≤ δ} <—distributional uncertainty region.
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Literature Review

RO & Divergence-DRO: Dupuis, James & Peterson ’00; Hansen &
Sargent ’01, ’08; Nilim & El Ghaoui ’02, ’03; Iyengar ’05; A. Ben-Tal,
L. El Ghaoui, & A. Nemirovski ’09; Bertsimas & Sim ’04; Bertsimas,
Brown, Caramanis ’13; Lim & Shanthikumar ’04; Lam ’13, ’17;
Csiszár & Breuer ’13; Jiang & Guan ’12; Hu & Hong ’13; Wang,
Glynn & Ye ’14; Bayrakskan & Love ’15; Duchi, Glynn & Namkoong
’16; Bandi and Bertsimas ’15; Bertsimas, Gupta & Kallus ’13.

Wasserstein-DRO & Moments: Scarf ’58; Shapiro ’15; Delage &
Ye ’10; Hampel ’73; Huber ’81; Pflug & Wozabal ’07; Delage & Ye
’10; Mehrotra & Zhang ’14; Esfahani & Kuhn ’15; Blanchet &
Murthy ’16; Gao & Kleywegt ’16; Duchi & Namkoong ’17.
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Questions of Interest, Challenges and Opportunities

How do you select the shape (i.e. D (P,P0)) and the size δ of
uncertainty region

Uδ = {P : D (P,P0) ≤ δ}?

How do you solve
max

Dc (P ,P0)≤δ
EP (f (Y ))?

How do you make inference if P0 is data driven or non-parametric?

Address these questions in the context of rare events.

Connect these findings to our thrusts.
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Selecting the Uncertainty Set: A Simple Example

How to choose {P : D (P,P0) ≤ δ}?

Of course, tractatibility is a concern...

But also we’d like to understand what are the implications of the
chosen “geometry”?

For example, let’s take the simple EVT discussed earlier.
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How to Select the Uncertainty Set?

Naturally, P0 is dictated by EVT

Mn = max{X1, ...,Xn} ≈ bnZ (γ) + an, (2)

with Z (γ) being Weibull: γ < 0 or Gumbel: γ = 0 or Frechet:
γ > 0.

Z (γ) = GEV (γ) includes Weibull, Gumbel, Frechet:

P (Z ≤ x) = exp
(
− (1+ γx)−1/γ

)
1+ γx > 0.

The larger the γ the heavier the tails <—cases
γ < 0,γ = 0,γ > 0: key for intuition in decision making!
If (2) holds, then X belongs to the domain of attraction of GEV (γ).
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Consider Divergence Criteria

We consider (with P0 = reference model from standard EVT)

F̄ ∗α (u) := max
P :Dα(P ||P0)≤δ

P(Mn > u).

Renyi divergence of degree α > 1

Dα (P ||P0) =
1

α− 1 log E0
((

dP
dP0

)α)
.

As α→ 1 get Kullback-Leibler (KL) divergence

Dα (P ||P0)→ D1 (P ||P0) = E0
(
dP
dP0

log
(
dP
dP0

))
.
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Using Renyi Divergence & KL in EVT

Theorem (B., He, and Murthy (2020))

F̄ ∗α (u) preserves domain of attraction if α > 1 and α = 1 substantially
increases the risk estimate:
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Illustration of the Kullblack-Leibler Selection vs Renyi

Tail CDFs F̄α (u): Blue = KL, Red = Renyi(5), Green = True.
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Optimal Transport Uncertainty Sets

Also consider {P : D (P0,P) ≤ δ} using optimal transport:

Dc (P0,P) = min{
∫
c (x , y)π (dx , dy)

s.t.
∫
y

π (dx , dy) = P0 (dx)∫
x

π (dx , dy) = P (dy)

π (dx , dy) ≥ 0}.

The Wasserstein distance W (µ, v) is obtained by choosing c (x , y) to
be a metric.

Based on (infinite dimensional) linear programming (tractable in
principle).
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Optimal Transport: Wasserstein Distance
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Robust Analysis with Optimal Transport Costs

Theorem (B. and Murthy (2019))

If c ≥ 0 is lower semicontinuous & EP0 |f (X )| < ∞,

sup
Dc (P0,P )≤δ

EP (f (Y )) = inf
λ≥0

EP0 [λδ+ sup
z
{f (z)− λc (X , z)}].

Moreover, π∗ and λ∗ can be characterized using complementary slackness.

Math. of Operations Research (2019):
https://doi-org/10.1287/moor.2018.0936
The key outcome is that strong duality holds and it reduces to a one
dimensional convex problem.
Far reaching implications!
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Unification and Extensions of Regularized Estimators

Support Vector Machines: B., Kang, Murthy ’19 -
https://doi-org/10.1287/moor.2018.0936

Group Lasso: B., & Kang ’16: https://arxiv.org/abs/1705.04241
(ACML ’17)
Generalized adaptive ridge: B., Kang, Murthy, Zhang ’17:
https://arxiv.org/abs/1705.07152
Semisupervised learning: B., and Kang ’20:
https://arxiv.org/abs/1702.08848 (OR ’20)
Comprehensive review: Rahimian and Mehrotra ’19:
https://arxiv.org/pdf/1908.05659.pdf.
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Deep Neural Networks: Adversarial Attacks

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus
(2014).
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Distributional Robustness and Generalization in Machine
Learning

Previous result can be used to recover: norm regularization, adversarial
training of neural networks, support vector machines, LASSO, etc. (see
https://doi-org/10.1287/moor.2018.0936).
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Implications for Risk Analysis

Corollary
Let B ANY closed set

cB (x) = inf{c (x , y) : y ∈ B}
= Optimal cost of transporting x to B .

then
sup

Dc (P0,P )≤δ

P (Y ∈ B) = P0 (cB (X ) ≤ 1/λ∗) ,

where λ∗ ≥ 0 satisfies (under mild assumptions)

δ = E0 [cB (X ) I (cB (X ) ≤ 1/λ∗)] .
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Can choose cB (·) so that calculation remains tractable...
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Additional Applications: Multidimensional Ruin Problems

Important: {cB (x) ≤ 1/λ∗} can preserve the geometry of B &
original process is preserved!

Brownian motion, can be robustified & estimate rare events involving
heavy-tails.

Estimate Ptrue (max0≤t≤1 InsuranceReserve (t) > b) (assume
InsuranceReserve(t) is Brownian motion under P0 (·))
Simulated data is heavy tailed (P (V > t) = 1/(1+ t)2.2).
Optimal transport cost: c (x , y) = max0≤t≤t |x (t)− y (t)|2

b P0(Ruin)
Ptrue (Ruin)

P ∗robust (Ruin)
Ptrue (Ruin)

100 1.07× 10−1 12.28
150 2.52× 10−4 10.65
200 5.35× 10−8 10.80
250 1.15× 10−12 10.98
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Discussion

Distributionally robust engineering design in material design
maxD (P ,P0)≤δ P (supx∈Ω ‖Du (x ,ω)‖ > b) ;

u (·) solves a PDE satisfying with random input.

(Zhigang+Vahid).
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Discussion

Distributionally Robust Bayesian Inference
Example:

min
φ(·)

E ‖Θ− φ (X )‖22 —> solution φ∗ (X ) = E (Θ|X ) .

If (X ,Θ) is Gaussian under P0, φ∗ (·) is affi ne.

Now, we have that Nguyen et al. (2020)

min
φ(·)

max
W2(P ,P0)≤δ

E ‖Θ− φ (X )‖22

Nash eq. exists, φ∗ is also affi ne.

Question: Inform uncertainty quantification with the Wasserstein distance
for a large class of PDEs with random input and also for max-stable

processes.
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Conclusions

Distributional robustness can be achieved by optimizing over a
non-parametric set of models (called uncertainty region).

The shape of the uncertainty region induces key properties in the
inference (Renyi-type divergence preserves domain of attraction).

Optimal transport recovers regularization, adversarial training and has
good generalization properties.

Optimal transport is flexible, can be used in robustifying rare events
for random fields, stochastic processes, random graphs, etc.

Key computation involves and linear programming in the context of
optimal transport.
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