High-Dimensional Learning for Conditioning

Youssef Marzouk, joint work with Ricardo Baptista, Alessio Spantini, & Olivier Zahm

> Department of Aeronautics and Astronautics Center for Computational Science and Engineering Statistics and Data Science Center Massachusetts Institute of Technology http://uqgroup.mit.edu

> > ANSRE MURI Kickoff Meeting.

Support from the OSD/Air Force under award number FA9550-20-1-0397.

16 February 2021

High-dimensional learning for *conditioning* is central to:

- Bayesian inference in stochastic models
- Data assimilation (filtering, smoothing, prediction) in dynamical systems
- Likelihood-free ("simulation-based") inference: when closed-form density functions are not available
- Characterizing rare events in all of these contexts...

- Choose a *reference distribution* η (e.g., standard Gaussian)
- Seek a transport map $T: \mathbb{R}^d \to \mathbb{R}^d$ such that $T_{\sharp}\eta = \pi$

- Choose a reference distribution η (e.g., standard Gaussian)
- Seek a transport map $\mathcal{T}:\mathbb{R}^d
 ightarrow\mathbb{R}^d$ such that $\mathcal{T}_\sharp\eta=\pi$
- Equivalently, find $S = T^{-1}$ such that $S_{\sharp}\pi = \eta$

- Choose a reference distribution η (e.g., standard Gaussian)
- Seek a transport map $\mathcal{T}:\mathbb{R}^d
 ightarrow\mathbb{R}^d$ such that $\mathcal{T}_\sharp\eta=\pi$
- Equivalently, find $S = T^{-1}$ such that $S_{\sharp}\pi = \eta$
- In principle, enables exact (independent, unweighted) sampling!

- Choose a *reference distribution* η (e.g., standard Gaussian)
- Seek a transport map $\mathcal{T}:\mathbb{R}^d
 ightarrow\mathbb{R}^d$ such that $\mathcal{T}_{\sharp}\eta=\pi$
- Equivalently, find $S = T^{-1}$ such that $S_{\sharp}\pi = \eta$
- Satisfying these conditions only **approximately** can still be useful!

Choice of transport map

Consider the triangular **Knothe-Rosenblatt rearrangement** on \mathbb{R}^d

$$S(\mathbf{x}) = \begin{bmatrix} S^{1}(x_{1}) \\ S^{2}(x_{1}, x_{2}) \\ \vdots \\ S^{d}(x_{1}, x_{2}, \dots, x_{d}) \end{bmatrix}$$

1 Unique S s.t. $S_{\sharp}\pi = \eta$ exists under mild conditions on π and η

- **2** Map is easily invertible and Jacobian ∇S is simple to evaluate
- **③** Monotonicity is essentially one-dimensional: $\partial_{x_k} S^k > 0$
- Each component S^k characterizes one marginal conditional

$$\pi(\mathbf{x}) = \pi(x_1)\pi(x_2|x_1)\cdots\pi(x_d|x_1,\ldots,x_{d-1})$$

From conditional simulation to inference

- Suppose we now have parameters $\mathbf{X} \in \mathbb{R}^n$ and data $\mathbf{Y} \in \mathbb{R}^m$, and joint prior model $\pi_{\mathbf{Y},\mathbf{X}}$. Seek the KR map S that pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\mathcal{N}(0,\mathbf{I}_{m+n})$
- The KR map immediately has a block structure

$$S(\mathbf{y},\mathbf{x}) = \begin{bmatrix} S^{\mathbf{Y}}(\mathbf{y}) \\ S^{\mathbf{X}}(\mathbf{y},\mathbf{x}) \end{bmatrix},$$

which suggests two properties:

$$S^{\mathbf{X}}$$
 pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\mathcal{N}(0,\mathbf{I}_n)$
 $\boldsymbol{\xi} \mapsto S^{\mathbf{X}}(\mathbf{y}^*,\boldsymbol{\xi})$ pushes $\pi_{\mathbf{X}|\mathbf{Y}=\mathbf{y}^*}$ to $\mathcal{N}(0,\mathbf{I}_n)$

Approximate the conditional density:

$$\widehat{\pi}_{\mathsf{X}|\mathsf{Y}=\mathsf{y}^*} = \widehat{S}^{\mathsf{X}}(\mathsf{y}^*,\cdot)^{\sharp}\mathcal{N}(0,\mathsf{I}_n)$$

From conditional simulation to inference

- Suppose we now have parameters $\mathbf{X} \in \mathbb{R}^n$ and data $\mathbf{Y} \in \mathbb{R}^m$, and joint prior model $\pi_{\mathbf{Y},\mathbf{X}}$. Seek the KR map S that pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\mathcal{N}(0,\mathbf{I}_{m+n})$
- The KR map immediately has a block structure

$$S(\mathbf{y},\mathbf{x}) = \begin{bmatrix} S^{\mathbf{Y}}(\mathbf{y}) \\ S^{\mathbf{X}}(\mathbf{y},\mathbf{x}) \end{bmatrix},$$

which suggests two properties:

$$S^{\mathsf{X}}$$
 pushes $\pi_{\mathsf{Y},\mathsf{X}}$ to $\mathcal{N}(0,\mathsf{I}_n)$

$$\boldsymbol{\xi} \mapsto S^{\mathsf{X}}(\mathbf{y}^*, \boldsymbol{\xi})$$
 pushes $\pi_{\mathsf{X}|\mathbf{Y}=\mathbf{y}^*}$ to $\mathcal{N}(0, \mathsf{I}_n)$

2 Sample the conditional distribution $\hat{\pi}_{X|Y=y^*}$:

invert
$$\widehat{S}^{X}(\mathbf{y}^{*}, \mathbf{x}^{i}) = \boldsymbol{\xi}^{i}$$
 for \mathbf{x}^{i} given $\boldsymbol{\xi}^{i} \sim \mathcal{N}(0, \mathbf{I}_{n})$

From conditional simulation to inference

- Suppose we now have parameters $\mathbf{X} \in \mathbb{R}^n$ and data $\mathbf{Y} \in \mathbb{R}^m$, and joint prior model $\pi_{\mathbf{Y},\mathbf{X}}$. Seek the KR map S that pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\mathcal{N}(0,\mathbf{I}_{m+n})$
- The KR map immediately has a block structure

$$S(\mathbf{y},\mathbf{x}) = \begin{bmatrix} S^{\mathbf{Y}}(\mathbf{y}) \\ S^{\mathbf{X}}(\mathbf{y},\mathbf{x}) \end{bmatrix},$$

which suggests two properties:

$$S^{\mathbf{X}}$$
 pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\mathcal{N}(0,\mathbf{I}_n)$
 $\boldsymbol{\xi} \mapsto S^{\mathbf{X}}(\mathbf{y}^*,\boldsymbol{\xi})$ pushes $\pi_{\mathbf{X}|\mathbf{Y}=\mathbf{y}^*}$ to $\mathcal{N}(0,\mathbf{I}_n)$

Sample the conditional via a composed map T that pushes forward π_{Y,X} to π_{X|Y=y*}:

$$T(\mathbf{y}, \mathbf{x}) = S^{\mathsf{X}}(\mathbf{y}^*, \cdot)^{-1} \circ S^{\mathsf{X}}(\mathbf{y}, \mathbf{x})$$

Data-driven formulation: learning "maps from samples"

Given a sample (xⁱ)^M_{i=1} ~ π: find each component function via convex (wrt S^k) constrained minimization (here, for standard Gaussian η):

$$\min_{S} D_{\mathcal{K}L}(\pi || S^{\sharp} \eta) \Leftrightarrow \min_{S^{k} : \partial_{k} S^{k} > 0} \mathbb{E}_{\pi} \left[\frac{1}{2} S^{k}(\mathbf{x}_{1:k})^{2} - \log \partial_{k} S^{k}(\mathbf{x}_{1:k}) \right] \forall k$$

• Approximate \mathbb{E}_{π} given i.i.d. samples from π : KL minimization equivalent to maximum likelihood estimation

$$\widehat{S}^{k} \in \arg \min_{S^{k} \in \mathcal{S}^{h}_{\Delta,k}} \frac{1}{M} \sum_{i=1}^{M} \left(\frac{1}{2} S^{k} (\mathbf{x}^{i}_{1:k})^{2} - \log \partial_{k} S^{k} (\mathbf{x}^{i}_{1:k}) \right)$$

How to solve **sequential inference** problems in dynamical systems, where key density functions cannot be evaluated?

[image: NCAR]

Nonlinear/non-Gaussian state-space model:

- Transition density $\pi_{\mathbf{Z}_k|\mathbf{Z}_{k-1}}$
- Observation density (likelihood) $\pi_{\mathbf{Y}_k|\mathbf{Z}_k}$

► Focus on recursively approximating the filtering distribution: $\pi_{\mathbf{Z}_k | \mathbf{y}_{0:k}} \rightarrow \pi_{\mathbf{Z}_{k+1} | \mathbf{y}_{0:k+1}}$ (marginals of the full Bayesian solution)

- Consider the filtering of state-space models with:
 - High-dimensional states
 - Challenging nonlinear dynamics
 - Intractable transition kernels: can only obtain *forecast* samples, i.e., *draws* from $\pi_{\mathbf{Z}_{k+1}|\mathbf{z}_k}$
 - 4 Limited model evaluations, e.g., small ensemble sizes
 - Sparse and local observations

Ensemble Kalman filter

 State-of-the-art results (in terms of tracking) are often obtained with the ensemble Kalman filter (EnKF)

Move samples via an affine transformation; no weights or resampling!

Yet ultimately inconsistent: does not converge to the true posterior

Ensemble Kalman filter

 State-of-the-art results (in terms of tracking) are often obtained with the ensemble Kalman filter (EnKF)

Move samples via an affine transformation; no weights or resampling!

> Yet ultimately inconsistent: does not converge to the true posterior

Can we improve and generalize the EnKF while preserving scalability?

Assimilation step

At any assimilation time k, we have a Bayesian inference problem:

- $\pi_{\mathbf{X}}$ is the forecast distribution on \mathbb{R}^n
- $\pi_{\mathbf{Y}|\mathbf{X}}$ is the likelihood of the observations $\mathbf{Y} \in \mathbb{R}^d$
- ► $\pi_{X|Y=y^*}$ is the filtering distribution for a realization y^* of the data

Goal: sample the posterior given only *(few)* prior samples $\mathbf{x}_1, \ldots, \mathbf{x}_M$ and the ability to simulate data $\mathbf{y}_i | \mathbf{x}_i$

A likelihood-free inference algorithm with maps

Transport map ensemble filter

- **Or Compute forecast ensemble** $\mathbf{x}_1, \ldots, \mathbf{x}_M$
- **2** Generate samples $(\mathbf{y}_i, \mathbf{x}_i)$ from $\pi_{\mathbf{Y}, \mathbf{X}}$ with $\mathbf{y}_i \sim \pi_{\mathbf{Y}|\mathbf{X}=\mathbf{x}_i}$
- **③** Build an estimator \hat{T} of T

Or analysis ensemble as $\mathbf{x}_i^{a} = \widehat{\mathcal{T}}(\mathbf{y}_i, \mathbf{x}_i)$ for i = 1, ..., M

Recall the form of S:

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathbf{Y}}(\mathbf{y}) \\ S^{\mathbf{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}, \qquad S_{\sharp} \pi_{\mathbf{Y}, \mathbf{X}} = \mathcal{N}(0, \mathbf{I}_{d+n}).$$

• We propose a simple estimator \hat{T} of T:

$$\widehat{\mathcal{T}}(\mathbf{y},\mathbf{x}) = \widehat{S}^{\mathsf{X}}(\mathbf{y}^*,\cdot)^{-1} \circ \widehat{S}^{\mathsf{X}}(\mathbf{y},\mathbf{x}),$$

where Ŝ is a maximum likelihood estimator of S
This is simply the "maps from samples" approach!

$$\widehat{S}^{k} \in \arg \min_{S^{k} \in \mathcal{S}_{\Delta,k}^{h}} \frac{1}{M} \sum_{i=1}^{M} \left(\frac{1}{2} S^{k}(\mathbf{x}_{i})^{2} - \log \partial_{k} S^{k}(\mathbf{x}_{i}) \right)$$

- Optimization is not needed for nonlinear separable parameterizations of the form $\hat{S}^k(x_{1:k}) = g(x_{1:k-1}) + \alpha x_k$ (just *linear regression*)
- Connection to EnKF: a linear parameterization of S^k recovers a particular form of EnKF with "perturbed observations"
- ► Choice of approximation space allows control of the bias and variance of S
 - Richer parameterizations yield less bias, but potentially higher variance

Example: Lorenz-63

Simple example: three-dimensional Lorenz-63 system

$$\begin{aligned} \frac{\mathrm{d}X_1}{\mathrm{d}t} &= \sigma(X_2 - X_1), \\ \frac{\mathrm{d}X_2}{\mathrm{d}t} &= X_1(\rho - X_3) - X_2 \\ \frac{\mathrm{d}X_3}{\mathrm{d}t} &= X_1X_2 - \beta X_3 \end{aligned}$$

- Chaotic setting: $\rho = 28$, $\sigma = 10$, $\beta = 8/3$
- ► Fully observed, with additive Gaussian observation noise E_j ~ N(0, 2²)
- Assimilation interval $\Delta t = 0.1$
- ▶ Results computed over 2000 assimilation cycles, following spin-up
- Map parameterizations: $S^k(x_{1:k}) = \sum_{i \le k} \Psi_i(x_i)$, with Ψ_i = linear + {RBFs or sigmoids }

Example: Lorenz-63

Mean "tracking" error vs. ensemble size and choice of map

Example: Lorenz-63

What about comparison to the true Bayesian solution?

"Localize" the map in high dimensions

• Regularize the estimator \hat{S} of S by imposing **sparsity**, e.g.,

$$\widehat{S}(x_1, \ldots, x_4) = \begin{bmatrix} \widehat{S}^1(x_1) \\ \widehat{S}^2(x_1, x_2) \\ \widehat{S}^3(x_2, x_3) \\ \widehat{S}^4(x_3, x_4) \end{bmatrix}$$

- ► The sparsity of the *k*th component of *S* depends on the sparsity of the marginal conditional function π_{X_k|X_{1:k-1}}(x_k|x_{1:k-1})
- ▶ Localization heuristic: let each \hat{S}^k depend on variables $(x_j)_{j < k}$ that are within a distance ℓ from x_k in state space.
- Explicit link between sparsity of S and conditional independence in non-Gaussian graphical models described in

[Inference via low-dimensional couplings, Spantini/Bigoni/M JMLR 2018]

► A hard test-case configuration [Bengtsson et al. 2003]:

$$\frac{d\mathbf{X}_{j}}{dt} = (\mathbf{X}_{j+1} - \mathbf{X}_{j-2})\mathbf{X}_{j-1} - \mathbf{X}_{j} + F, \qquad j = 1, \dots, 40 \mathbf{Y}_{j} = \mathbf{X}_{j} + \mathcal{E}_{j}, \qquad j = 1, 3, 5 \dots, 39$$

- ▶ F = 8 (chaotic) and $\mathcal{E}_j \sim \mathcal{N}(0, 0.5)$ (small noise for PF)
- Time between observations: $\Delta_{obs} = 0.4$ (large)
- Results computed over 2000 assimilation cycles, following spin-up

• The nonlinear filter is $\approx 25\%$ more accurate in RMSE than EnKF

Lorenz-96: tracking performance of the filter

Simple and localized nonlinearities have significant impact

ANSRE MURI Kickoff

- Nonlinear generalization of the EnKF: move the ensemble members via local nonlinear transport maps, no weights or degeneracy
- Learn non-Gaussian features via nonlinear continuous transport and convex optimization
- Choice of map basis and **sparsity** provide regularization

- Nonlinear generalization of the EnKF: move the ensemble members via local nonlinear transport maps, no weights or degeneracy
- Learn non-Gaussian features via nonlinear continuous transport and convex optimization
- Choice of map basis and **sparsity** provide regularization
- In principle, inference is consistent as S^h_∆ is enriched and M → ∞. But what is a good choice of S^h_∆ for any fixed ensemble size M?
- How to relate map structure/parameterization to the underlying dynamics, observation operators, and data?
- How well can these maps capture tails and extremes?

Underlying question: how to learn maps?

The "ML way:" many normalizing/autoregressive "flows" are built from special cases of triangular maps, and their compositions:

Underlying question: how to learn maps?

The "ML way:" many normalizing/autoregressive "flows" are built from special cases of triangular maps, and their compositions:

- ► NICE: Nonlinear independent component estimation [Dinh et al. 2015] $S^k(x_1, ..., x_k) = \mu_k(\mathbf{x}_{i < k}) + x_k$
- ► Inverse autoregressive flow [Dinh et al. 2017] $S^{k}(x_{1}, ..., x_{k}) = (1 - \sigma_{k}(\mathbf{x}_{i < k}))\mu_{k}(\mathbf{x}_{i < k}) + x_{k}\sigma_{k}(\mathbf{x}_{i < k})$
- ► Masked autoregressive flow [Papamakarios et al. 2017] $S^{k}(x_{1},...,x_{k}) = \mu_{k}(\mathbf{x}_{i < k}) + x_{k} \exp(\alpha_{k}(\mathbf{x}_{i < k}))$
- Sum-of-squares polynomial flow [Jaini et al. 2019] $S^{k}(x_{1}, \ldots, x_{k}) = a_{k}(\mathbf{x}_{i < k}) + \int_{0}^{x_{k}} \sum_{\kappa=1}^{p} (\operatorname{poly}(t; \mathbf{a}_{\kappa, k}(\mathbf{x}_{i < k}))^{2} dt$

Underlying question: how to learn maps?

The "ML way:" many normalizing/autoregressive "flows" are built from special cases of triangular maps, and their compositions:

- ► NICE: Nonlinear independent component estimation [Dinh et al. 2015] $S^k(x_1, ..., x_k) = \mu_k(\mathbf{x}_{i < k}) + x_k$
- ► Inverse autoregressive flow [Dinh et al. 2017] $S^{k}(x_{1}, ..., x_{k}) = (1 - \sigma_{k}(\mathbf{x}_{i < k}))\mu_{k}(\mathbf{x}_{i < k}) + x_{k}\sigma_{k}(\mathbf{x}_{i < k})$
- ► Masked autoregressive flow [Papamakarios et al. 2017] $S^{k}(x_{1},...,x_{k}) = \mu_{k}(\mathbf{x}_{i < k}) + x_{k} \exp(\alpha_{k}(\mathbf{x}_{i < k}))$
- Sum-of-squares polynomial flow [Jaini et al. 2019] $S^{k}(x_{1}, \ldots, x_{k}) = a_{k}(\mathbf{x}_{i < k}) + \int_{0}^{x_{k}} \sum_{\kappa=1}^{p} (\operatorname{poly}(t; \mathbf{a}_{\kappa, k}(\mathbf{x}_{i < k}))^{2} dt$
- Many ad hoc choices and challenging optimization problems ...

Structure: Satisfy monotonicity constraint $\partial_k S^k(\mathbf{x}_{1:k}) > 0 \ \forall \mathbf{x}_{1:k}$ **Existing methods**

- Enforce at finite training samples $\partial_k S^k(\mathbf{x}_{1:k}^i) > 0$ for i = 1, ..., n
- Enforce by construction: e.g., SOS polynomial flows

$$S^{k}(\mathbf{x}_{1:k}) = a_{k}(\mathbf{x}_{< k}) + \int_{0}^{x_{k}} b_{k}(\mathbf{x}_{< k}, t)^{2} dt$$

Improved idea: Represent S^k via an **invertible** "rectifier"

$$S^{k}(\mathbf{x}_{1:k}) = \mathcal{R}_{k}(f)(\mathbf{x}_{1:k}) \coloneqq f(\mathbf{x}_{< k}, 0) + \int_{0}^{x_{k}} g(\partial_{k}f(\mathbf{x}_{< k}, t))dt,$$

where $g: \mathbb{R} \to \mathbb{R}_{>0}$ is bijective & smooth and $f: \mathbb{R}^k \to \mathbb{R}$ is unconstrained

Rectification of f (1-D example)

For smooth f and bijective $g \colon \mathbb{R} \to \mathbb{R}_{>0}$ (e.g., $g(x) = \log(1 + e^x))$

$$S(x) = \mathcal{R}(f)(x) := f(0) + \int_0^x g(\partial_x f(t)) dt,$$

Approximating monotone maps

Convert the constrained minimization to an unconstrained problem:

$$\min_{\{S:\partial_k S>0\}} \underbrace{\mathbb{E}_{\pi}\left[\frac{1}{2}S(\mathbf{x}_{1:k})^2 - \log|\partial_k S(\mathbf{x}_{1:k})|\right]}_{\mathcal{J}_k(S)} \Leftrightarrow \min_{f} \underbrace{\mathcal{J}_k \circ \mathcal{R}_k(f)}_{\mathcal{L}_k(f)}$$

Drawback: With this reparameterization, we lose convexity

Question: When will the objective still have "nice" properties?

Consider the space of functions $H^{1,k}(\mathbb{R}^k) := \left\{ f \colon \mathbb{R}^k \to \mathbb{R} \text{ such that } \int |f(\mathbf{x})|^2 + |\partial_k f(\mathbf{x})|^2 d\mathbf{x} < \infty \right\}$

Theorem [BZM]

Let $\pi(\mathbf{x}) \leq C_{\pi}\eta(\mathbf{x})$ for some $C_{\pi} < \infty$ and η standard Gaussian. Then, for $g(x) = \log(1 + \exp(x)), \mathcal{L}_k : H^{1,k}(\mathbb{R}^k) \to \mathbb{R}$ is continuous, bounded, and has a *unique global minimizer*.

Approximating monotone maps

- Mixture of Gaussians target density $\pi(x)$
- Approximate objective as $\widehat{\mathcal{L}}_k$ using n = 50 samples
- Evaluate $\hat{\mathcal{L}}_k$ along segments connecting random initial maps (t = 0) to critical points of gradient-based optimizer (t = 1)

Takeaway: Smooth objective with a single minimizer = reliable training!

Adaptive transport map (ATM) algorithm

Goal: Approximate $f(\mathbf{x})$ given *n* i.i.d. samples from π

Greedy enrichment procedure

- Look for sparse expansion $f(\mathbf{x}) = \sum_{\alpha \in \Lambda} c_{\alpha} \psi_{\alpha}(\mathbf{x})$
- Use tensor-product Hermite functions $\psi_{\alpha}(\mathbf{x}) = P_{\alpha_j}(\mathbf{x}) \exp(-\|\mathbf{x}\|^2/2)$
- Add one element to set of active multi-indices Λ_t at a time
- Restrict Λ_t to be downward closed
- Search for new features in the reduced margin of Λ_t

Numerical example: mixture of Gaussians

- 3-dimensional mixture of 8 Gaussians with random weights
- Learn map $S = (S^1, S^2, S^3)$ using n = 100 training samples
- Compare ATM to non-adaptive procedure using total-order expansions

Takeaways: ATM finds estimators with number of features m to balance bias and variance for each sample size n

Numerical example: Lorenz-96 data

 20-dimensional distribution for the state of the ODE at a fixed time starting from a Gaussian initial condition

Takeaways:

- ATM implicitly discovers conditional independence structure in π
- ▶ Natural semi-parametric method that gradually increases *m* with *n*

Will enable **data-driven** inference and prediction in chemical and material systems, using both experimental data and simulation models.

Research thrusts:

- Developing suitable map parameterizations and characterizing their expressiveness. Adaptive representations/algorithms.
- Understanding implications of map parameterization on the associated *estimation* (optimization) problems
- Sample complexity results
- ► Taking advantage of map **structure** implied by particular problems
 - Sparsity, low rank (Brennan et al. 2020), multiscale behavior...
 - How to parameterize maps to capture *tail behavior* and *extreme events*? What loss/objective should be used to identify such maps?
 - What about data that come from certain ODE or PDE systems?

Research thrusts (cont.):

- Direct transformations of Gaussian (or, e.g., elliptical) reference distributions versus joint-to-conditional transformations
- Some previous work on tails of triangular maps [Jaini et al. 2020]. Develop links to extreme value theory.
- Also, learning block-triangular maps in an adversarial framework [Kovachki et al. 2021]

With Evan Reed and team:

- Chemical kinetic network models
 - Consider *joint distribution* of chemical species concentrations or *atomic features*, learned from molecular dynamics simulation + physical constraints
 - Predict unobserved species given limited observations
 - ► Characterize and extrapolate temperature-dependent evolution: reactions become rare as T decreases

With Vahid Tarokh and team:

- Extreme values in PDE systems
 - ► Tails of triangular maps and links to (spatial) extreme value theory
 - Generative stochastic models for PDEs with uncertain coefficients and initial/boundary conditions
 - Conditional sampling in these models

Research plans

Broad area #2: model misspecification in generative modeling and inference (*collaboration with Jose Blanchet and team*)

In the misspecified Bayesian setting, posteriors can concentrate in undesirable ways. Can we devise Bayesian procedures that are *robust* to certain kinds of model misspecification? **Broad area #2:** model misspecification in generative modeling and inference (*collaboration with Jose Blanchet and team*)

- In the misspecified Bayesian setting, posteriors can concentrate in undesirable ways. Can we devise Bayesian procedures that are *robust* to certain kinds of model misspecification?
- Key results from Jose: links between classical regularized estimators and distributionally robust optimization
 - ► Apply these results to transport-based density estimation, e.g., with l₁ penalties.
 - How can approximation theoretic analysis of transport maps help characterize misspecification of generative models?
 - What are the implications for likelihood-free Bayesian inference? Consider transport maps trained from synthetic/simulation data and then applied to real/experimental data.
 - How can we design nonparametric uncertainty sets appropriate for conditional prediction?

Thanks for your attention!

References

- R. Baptista, Y. Marzouk, R. Morrison, O. Zahm. "Learning non-Gaussian graphical models via Hessian scores and triangular transport." arXiv:2101:03093. (And earlier conference version in *NeurIPS 2017*.)
- M. Brennan, D. Bigoni, O. Zahm, A. Spantini, Y. Marzouk. "Greedy inference with structure-exploiting lazy maps." *NeurIPS 2020*, arXiv:1906.00031.
- R. Baptista, O. Zahm, Y. Marzouk. "An adaptive transport framework for joint and conditional density estimation." arXiv:2009.10303, 2020.
- J. Zech, Y. Marzouk. "Sparse approximation of triangular transports on bounded domains." arXiv:2006.06994, 2020.
- N. Kovachki, R. Baptista, B. Hosseini and Y. Marzouk, "Conditional sampling with monotone GANs," arXiv:2006.06755, 2020.
- A. Spantini, R. Baptista, Y. Marzouk. "Coupling techniques for nonlinear ensemble filtering." arXiv:1907.00389, 2020.
- O. Zahm, T. Cui, K. Law, A. Spantini, Y. Marzouk. "Certified dimension reduction in nonlinear Bayesian inverse problems." arXiv:1807.03712, 2019.
- A. Spantini, D. Bigoni, Y. Marzouk. "Inference via low-dimensional couplings." JMLR 19(66): 1–71, 2018.
- M. Parno, Y. Marzouk, "Transport map accelerated Markov chain Monte Carlo." SIAM JUQ 6: 645–682, 2018.

ANSRE MURI Kickoff