
High-Dimensional Learning for Conditioning

Youssef Marzouk, joint work with
Ricardo Baptista, Alessio Spantini, & Olivier Zahm

Department of Aeronautics and Astronautics

Center for Computational Science and Engineering

Statistics and Data Science Center

Massachusetts Institute of Technology

http://uqgroup.mit.edu

ANSRE MURI Kickoff Meeting.

Support from the OSD/Air Force under award number FA9550-20-1-0397.

16 February 2021

Marzouk ANSRE MURI Kickoff 1 / 36

http://uqgroup.mit.edu


Problems of interest

High-dimensional learning for conditioning is central to:

I Bayesian inference in stochastic models
I Data assimilation (filtering, smoothing, prediction) in dynamical

systems
I Likelihood-free (“simulation-based”) inference: when closed-form

density functions are not available
I Characterizing rare events in all of these contexts. . .
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Tool: deterministic couplings of probability measures
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Figure 2-1: Illustration of exact and inexact transformations coming from T and T̃
respectively. The exact map pushes the target measure � to the standard Gaussian
reference p while the approximate map only captures some of the structure in �,
producing an approximation p̃ to the reference Gaussian.

µr does not contain any point masses and the cost function c(�, T (�)) is quadratic.
Details of the existence and uniqueness proofs can also be found in [102].

Being a form of regularization, the cost function in (2.2) defines the form and
structure of the optimal transport map. For illustration, consider the case when
� � N(0, I) and r � N(0, �) for some covariance matrix �. In this Gaussian example,

the transport map will be linear: r
i.d.
= �1/2�, where �1/2 is any one of the many

square roots of �. Two possible matrix square roots are the Cholesky factor, and the
eigenvalue square root. Interestingly, when the cost is given by

cEig(�, T (�)) = �� � T (�)�2, (2.3)

the optimal square root, �1/2, will be defined by the eigenvalue decomposition of �,
but when the cost is given by the limit of a a weighted quadratic defined by

cRos(�, T (�)) = lim
t�0

DX

k=1

tk�1|�k � Tk(�)|, (2.4)

the optimal square root, �1/2, will be defined by the Cholesky decomposition of �.
In the more general nonlinear and non-Gaussian setting, this latter cost is shown by
[22] and [15] to yield the well-known Rosenblatt transformation from [91].

The Cholesky factor is a special case of the Rosenblatt transformation, which it-
self is just a multivariate generalization of using cumulative distribution functions to
transform between univariate random variables (i.e., the “CDF trick”). Importantly,
the lower triangular structure present in the Cholesky factor, which makes inverting
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Core idea

I Choose a reference distribution ⌘ (e.g., standard Gaussian)
I Seek a transport map T : Rd ! Rd such that T]⌘ = ⇡
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   S =T−1

 η  π

Core idea

I Choose a reference distribution ⌘ (e.g., standard Gaussian)
I Seek a transport map T : Rd ! Rd such that T]⌘ = ⇡

I Equivalently, find S = T�1 such that S]⇡ = ⌘
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Core idea

I Choose a reference distribution ⌘ (e.g., standard Gaussian)
I Seek a transport map T : Rd ! Rd such that T]⌘ = ⇡

I Equivalently, find S = T�1 such that S]⇡ = ⌘

I In principle, enables exact (independent, unweighted) sampling!
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Core idea

I Choose a reference distribution ⌘ (e.g., standard Gaussian)
I Seek a transport map T : Rd ! Rd such that T]⌘ = ⇡

I Equivalently, find S = T�1 such that S]⇡ = ⌘

I Satisfying these conditions only approximately can still be useful!
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Choice of transport map

Consider the triangular Knothe-Rosenblatt rearrangement on Rd

S(x) =

2

6664

S1(x
1

)
S2(x

1

, x
2

)
...

Sd(x
1

, x
2

, . . . , x
d

)

3

7775

1 Unique S s.t. S]⇡ = ⌘ exists under mild conditions on ⇡ and ⌘
2 Map is easily invertible and Jacobian rS is simple to evaluate
3 Monotonicity is essentially one-dimensional: @

x

k

Sk > 0
4 Each component Sk characterizes one marginal conditional

⇡(x) = ⇡(x
1

)⇡(x
2

|x
1

) · · ·⇡(x
d

|x
1

, . . . , x
d�1

)
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From conditional simulation to inference

I Suppose we now have parameters X 2 Rn and data Y 2 Rm, and
joint prior model ⇡

Y,X. Seek the KR map S that pushes ⇡
Y,X to

N (0, I
m+n

)
I The KR map immediately has a block structure

S(y, x) =

"
SY(y)
SX(y, x)

#

,

which suggests two properties:
SX pushes ⇡

Y,X to N (0, I
n

)

⇠ 7! SX(y⇤, ⇠) pushes ⇡
X|Y=y

⇤ to N (0, I
n

)

1 Approximate the conditional density:

b⇡
X|Y=y

⇤ = bSX(y⇤, ·)]N (0, I
n

)
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Y,X to N (0, I
n

)

⇠ 7! SX(y⇤, ⇠) pushes ⇡
X|Y=y

⇤ to N (0, I
n

)

3 Sample the conditional via a composed map T that pushes forward
⇡

Y,X to ⇡
X|Y=y

⇤ :

T (y, x) = SX(y⇤, ·)�1 � SX(y, x)
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How to construct triangular maps?

Data-driven formulation: learning “maps from samples”

I Given a sample (xi)M
i=1

⇠ ⇡: find each component function via
convex (wrt Sk) constrained minimization (here, for standard
Gaussian ⌘):

min
S

D
KL

(⇡||S]⌘) , min
S

k : @
k

S

k>0

E⇡

1
2
Sk(x

1:k)
2 � log @

k

Sk(x
1:k)

�
8k

I Approximate E⇡ given i.i.d. samples from ⇡: KL minimization
equivalent to maximum likelihood estimation

bSk 2 arg min
S

k2Sh

4,k

1
M

MX

i=1

✓
1
2
Sk(xi

1:k)
2 � log @

k

Sk(xi

1:k)

◆

Marzouk ANSRE MURI Kickoff 6 / 36



Example: data assimilation

How to solve sequential inference problems in dynamical systems,
where key density functions cannot be evaluated?

[image: NCAR]
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Formalize as Bayesian filtering

I Nonlinear/non-Gaussian state-space model:
I Transition density ⇡

Z

k

|Z
k�1

I Observation density (likelihood) ⇡
Y

k

|Z
k

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

1

I Focus on recursively approximating the filtering distribution:
⇡

Z

k

| y
0:k
! ⇡

Z

k+1

| y
0:k+1

(marginals of the full Bayesian solution)
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Problem setting

I Consider the filtering of state-space models with:
1 High-dimensional states
2 Challenging nonlinear dynamics
3 Intractable transition kernels: can only obtain forecast samples, i.e.,

draws from ⇡
Z

k+1

| z
k

4 Limited model evaluations, e.g., small ensemble sizes
5 Sparse and local observations
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Ensemble Kalman filter

I State-of-the-art results (in terms of tracking) are often obtained with
the ensemble Kalman filter (EnKF)

⇡Zk�1|Y 0:k�1

forecast step analysis step

Bayesian inference

⇡Zk|Y 0:k�1
⇡Zk|Y 0:k

I Move samples via an affine transformation; no weights or resampling!
I Yet ultimately inconsistent: does not converge to the true posterior

Can we improve and generalize the EnKF while preserving scalability?

Marzouk ANSRE MURI Kickoff 10 / 36



Ensemble Kalman filter

I State-of-the-art results (in terms of tracking) are often obtained with
the ensemble Kalman filter (EnKF)

⇡Zk�1|Y 0:k�1

forecast step analysis step

Bayesian inference

⇡Zk|Y 0:k�1
⇡Zk|Y 0:k

I Move samples via an affine transformation; no weights or resampling!
I Yet ultimately inconsistent: does not converge to the true posterior

Can we improve and generalize the EnKF while preserving scalability?

Marzouk ANSRE MURI Kickoff 10 / 36



Assimilation step

At any assimilation time k , we have a Bayesian inference problem:

xi

⇡X|Y =y⇤⇡X
prior posterior

I ⇡
X

is the forecast distribution on Rn

I ⇡
Y|X is the likelihood of the observations Y 2 Rd

I ⇡
X|Y=y

⇤ is the filtering distribution for a realization y⇤ of the data

Goal: sample the posterior given only (few) prior samples x
1

, . . . , x
M

and the ability to simulate data y
i

|x
i
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A likelihood-free inference algorithm with maps

T (y,x)

⇡
X|Y =y

⇤⇡
X

⇡
Y ,X

joint

xi

⇡
Y |X=xi

Transport map ensemble filter
1 Compute forecast ensemble x

1

, . . . , x
M

2 Generate samples (y
i

, x
i

) from ⇡
Y,X with y

i

⇠ ⇡
Y|X=x

i

3 Build an estimator bT of T
4 Compute analysis ensemble as xa

i

= bT (y
i

, x
i

) for i = 1, . . . ,M
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Estimator for the analysis map

I Recall the form of S :

S(y, x) =

"
SY(y)
SX(y, x)

#

, S] ⇡Y,X = N (0, I
d+n

).

I We propose a simple estimator bT of T :

bT (y, x) = bSX(y⇤, ·)�1 � bSX(y, x),

where bS is a maximum likelihood estimator of S
I This is simply the “maps from samples” approach!
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Map parameterizations

bSk 2 arg min
S

k2Sh

4,k

1
M

MX

i=1

✓
1
2
Sk(x

i

)2 � log @
k

Sk(x
i

)

◆

I Optimization is not needed for nonlinear separable parameterizations
of the form bSk(x

1:k) = g(x
1:k�1

) + ↵x
k

(just linear regression)

I Connection to EnKF: a linear parameterization of bSk recovers a
particular form of EnKF with “perturbed observations”

I Choice of approximation space allows control of the bias and variance
of bS
I Richer parameterizations yield less bias, but potentially higher variance
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Example: Lorenz-63

Simple example: three-dimensional Lorenz-63 system

dX
1

dt
= �(X

2

� X
1

),

dX
2

dt
= X

1

(⇢� X
3

)� X
2

dX
3

dt
= X

1

X
2

� �X
3

I Chaotic setting: ⇢ = 28, � = 10, � = 8/3
I Fully observed, with additive Gaussian observation noise
E

j

⇠ N (0, 22)

I Assimilation interval �t = 0.1
I Results computed over 2000 assimilation cycles, following spin-up

I Map parameterizations: Sk(x
1:k) =

P
ik

 
i

(x
i

), with  
i

= linear
+ {RBFs or sigmoids }
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Example: Lorenz-63

Mean “tracking” error vs. ensemble size and choice of map
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Example: Lorenz-63

What about comparison to the true Bayesian solution?
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“Localize” the map in high dimensions

I Regularize the estimator bS of S by imposing sparsity, e.g.,

bS(x
1

, . . . , x
4

) =

2

66664

bS1(x
1

)
bS2(x

1

, x
2

)
bS3(x

1

, x
2

, x
3

)
bS4(x

1

,x
2

, x
3

, x
4

)

3

77775

I The sparsity of the kth component of S depends on the sparsity of
the marginal conditional function ⇡

X

k

|X
1:k�1

(x
k

|x
1:k�1

)

I Localization heuristic: let each bSk depend on variables (x
j

)
j<k

that
are within a distance ` from x

k

in state space.
I Explicit link between sparsity of S and conditional independence in

non-Gaussian graphical models described in
[Inference via low-dimensional couplings, Spantini/Bigoni/M JMLR 2018]
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Lorenz-96 in chaotic regime (40-dimensional state)

I A hard test-case configuration [Bengtsson et al. 2003]:

dX
j

dt
= (X

j+1

� X
j�2

)X
j�1

� X
j

+ F , j = 1, . . . , 40

Y
j

= X
j

+ E
j

, j = 1, 3, 5 . . . , 39

I F = 8 (chaotic) and E
j

⇠ N (0, 0.5) (small noise for PF)
I Time between observations: �

obs

= 0.4 (large)
I Results computed over 2000 assimilation cycles, following spin-up



Lorenz-96: “hard” case

I The nonlinear filter is ⇡ 25% more accurate in RMSE than EnKF
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Lorenz-96: tracking performance of the filter

I Simple and and localized nonlinearities have significant impact
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Remarks and issues

I Nonlinear generalization of the EnKF: move the ensemble
members via local nonlinear transport maps, no weights or degeneracy

I Learn non-Gaussian features via nonlinear continuous transport and
convex optimization

I Choice of map basis and sparsity provide regularization

I In principle, inference is consistent as Sh

4 is enriched and M !1.
But what is a good choice of Sh

4 for any fixed ensemble size M?
I How to relate map structure/parameterization to the underlying

dynamics, observation operators, and data?
I How well can these maps capture tails and extremes?
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Underlying question: how to learn maps?

The “ML way:” many normalizing/autoregressive “flows” are built from special
cases of triangular maps, and their compositions:

I NICE: Nonlinear independent component estimation [Dinh et al. 2015]
Sk(x

1

, . . . , x
k

) = µ
k

(x
i<k

) + x
k

I Inverse autoregressive flow [Dinh et al. 2017]
Sk(x

1

, . . . , x
k

) = (1� �
k

(x
i<k

))µ
k

(x
i<k

) + x
k

�
k

(x
i<k

)

I Masked autoregressive flow [Papamakarios et al. 2017]
Sk(x

1

, . . . , x
k

) = µ
k

(x
i<k

) + x
k

exp(↵
k

(x
i<k

))

I Sum-of-squares polynomial flow [Jaini et al. 2019]

Sk(x
1

, . . . , x
k

) = a
k

(x
i<k

) +

Z
x

k

0

pX

=1

(poly(t; a,k(xi<k

))2dt

I Many ad hoc choices and challenging optimization problems . . .
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Parameterizing monotone maps

Structure: Satisfy monotonicity constraint @
k

Sk(x
1:k) > 0 8x

1:k

Existing methods
I Enforce at finite training samples @

k

Sk(xi

1:k) > 0 for i = 1, . . . , n
I Enforce by construction: e.g., SOS polynomial flows

Sk(x
1:k) = a

k

(x<k

) +

Z
x

k

0

b
k

(x<k

, t)2dt

Improved idea: Represent Sk via an invertible “rectifier”

Sk(x
1:k) = Rk

(f )(x
1:k) := f (x<k

, 0) +
Z

x

k

0

g(@
k

f (x<k

, t))dt,

where g : R! R>0

is bijective & smooth and f : Rk ! R is unconstrained
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Parameterizing monotone maps

Rectification of f (1-D example)

For smooth f and bijective g : R! R>0

(e.g., g(x) = log(1 + ex ))

S(x) = R(f )(x) := f (0) +
Z

x

0

g(@
x

f (t))dt,

R(f )

R�1(S)
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Approximating monotone maps

Convert the constrained minimization to an unconstrained problem:

min
{S:@

k

S>0}
E⇡


1
2
S(x

1:k)
2 � log |@

k

S(x
1:k)|

�

| {z }
J

k

(S)

, min
f

J
k

�R
k

(f )| {z }
L

k

(f )

Drawback: With this reparameterization, we lose convexity

Question: When will the objective still have “nice” properties?

Consider the space of functions
H1,k(Rk) :=

�
f : Rk ! R such that

R
|f (x)|2 + |@

k

f (x)|2dx <1
 

Theorem [BZM]

Let ⇡(x)  C⇡⌘(x) for some C⇡ <1 and ⌘ standard Gaussian. Then, for
g(x) = log(1 + exp(x)), L

k

: H1,k(Rk)! R is continuous, bounded, and
has a unique global minimizer.
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Approximating monotone maps

I Mixture of Gaussians target density ⇡(x)
I Approximate objective as bL

k

using n = 50 samples
I Evaluate bL

k

along segments connecting random initial maps (t = 0)
to critical points of gradient-based optimizer (t = 1)

g(x) = log(1 + exp(x)) g(x) = x2

Takeaway: Smooth objective with a single minimizer = reliable training!
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Adaptive transport map (ATM) algorithm

Goal: Approximate f (x) given n i.i.d. samples from ⇡

Greedy enrichment procedure
I Look for sparse expansion f (x) =

P
↵2⇤ c↵ ↵(x)

I Use tensor-product Hermite functions  ↵(x) = P↵
j

(x) exp(�kxk2/2)
I Add one element to set of active multi-indices ⇤

t

at a time
I Restrict ⇤

t

to be downward closed
I Search for new features in the reduced margin of ⇤

t
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Numerical example: mixture of Gaussians

I 3-dimensional mixture of 8 Gaussians with random weights
I Learn map S = (S1,S2,S3) using n = 100 training samples
I Compare ATM to non-adaptive procedure using total-order expansions

True PDF Approximate PDF Log-like on test set

Takeaways: ATM finds estimators with number of features m to balance
bias and variance for each sample size n
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Numerical example: Lorenz-96 data

I 20-dimensional distribution for the state of the ODE at a fixed time
starting from a Gaussian initial condition

Log-like and m vs n

1

2

3

4

5

6

7

8

9

Sparsity of S: n = 316

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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4
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8

9

10

11

12

13

14

15

Conditional independence

Takeaways:
I

ATM implicitly discovers conditional independence structure in ⇡
I Natural semi-parametric method that gradually increases m with n
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Research plans

Broad area #1: high-dimensional conditional generative modeling and
likelihood-free inference using transport maps
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Research plans

Broad area #1: high-dimensional conditional generative modeling and
likelihood-free inference using transport maps

Will enable data-driven inference and prediction in chemical and material
systems, using both experimental data and simulation models.
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Research plans

Broad area #1: high-dimensional conditional generative modeling and
likelihood-free inference using transport maps

Research thrusts:
I Developing suitable map parameterizations and characterizing their

expressiveness. Adaptive representations/algorithms.
I Understanding implications of map parameterization on the

associated estimation (optimization) problems
I Sample complexity results
I Taking advantage of map structure implied by particular problems

I Sparsity, low rank (Brennan et al. 2020), multiscale behavior. . .
I How to parameterize maps to capture tail behavior and extreme

events? What loss/objective should be used to identify such maps?
I What about data that come from certain ODE or PDE systems?
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Research plans

Broad area #1: high-dimensional conditional generative modeling and
likelihood-free inference using transport maps

Research thrusts (cont.):
I Direct transformations of Gaussian (or, e.g., elliptical) reference

distributions versus joint-to-conditional transformations
I Some previous work on tails of triangular maps [Jaini et al. 2020].

Develop links to extreme value theory.
I Also, learning block-triangular maps in an adversarial framework

[Kovachki et al. 2021]
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Collaborative efforts

With Evan Reed and team:

I Chemical kinetic network models
I Consider joint distribution of chemical species concentrations or

atomic features, learned from molecular dynamics simulation + physical
constraints

I Predict unobserved species given limited observations
I Characterize and extrapolate temperature-dependent evolution:

reactions become rare as T decreases

With Vahid Tarokh and team:
I Extreme values in PDE systems

I Tails of triangular maps and links to (spatial) extreme value theory
I Generative stochastic models for PDEs with uncertain coefficients and

initial/boundary conditions
I Conditional sampling in these models
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Research plans

Broad area #2: model misspecification in generative modeling and
inference (collaboration with Jose Blanchet and team)

I In the misspecified Bayesian setting, posteriors can concentrate in
undesirable ways. Can we devise Bayesian procedures that are robust
to certain kinds of model misspecification?

I Key results from Jose: links between classical regularized estimators
and distributionally robust optimization
I Apply these results to transport-based density estimation, e.g., with `

1

penalties.
I How can approximation theoretic analysis of transport maps help

characterize misspecification of generative models?
I What are the implications for likelihood-free Bayesian inference?

Consider transport maps trained from synthetic/simulation data and
then applied to real/experimental data.

I How can we design nonparametric uncertainty sets appropriate for
conditional prediction?
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Conclusions

Thanks for your attention!
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