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Problems of interest

High-dimensional learning for conditioning is central to:

» Bayesian inference in stochastic models

» Data assimilation (filtering, smoothing, prediction) in dynamical
systems

v

Likelihood-free (“simulation-based") inference: when closed-form
density functions are not available

v

Characterizing rare events in all of these contexts. ..
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Tool: deterministic couplings of probability measures

» Choose a reference distribution 1 (e.g., standard Gaussian)
» Seek a transport map T : RY — RY such that Tm=m
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Tool: deterministic couplings of probability measures

» Choose a reference distribution 1 (e.g., standard Gaussian)
» Seek a transport map T : RY — RY such that Tm=m
» Equivalently, find S = T~1 such that Sym =1

Marzouk ANSRE MURI Kickoff 3/36



Tool: deterministic couplings of probability measures

» Choose a reference distribution 1 (e.g., standard Gaussian)

» Seek a transport map T : RY — R9 such that Tyn =7

» Equivalently, find S = T~ such that Sym =7

» In principle, enables exact (independent, unweighted) sampling!
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Tool: deterministic couplings of probability measures

» Choose a reference distribution m (e.g., standard Gaussian)

» Seek a transport map T : RY — RY such that Tyn =

» Equivalently, find S = T~ such that Spm=mn

» Satisfying these conditions only approximately can still be useful!
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Choice of transport map

Consider the triangular Knothe-Rosenblatt rearrangement on R

St(x)
S(x) = 52(.le)<2)

Sd(Xl,XQ, e ,Xd)

© Unique S s.t. Sym = m exists under mild conditions on 7 and n
© Map is easily invertible and Jacobian VS is simple to evaluate
© Monotonicity is essentially one-dimensional: 8y, S* > 0

@ Each component S¥ characterizes one marginal conditional

m(x) = w(xy)m(xe|x1) - - T(Xg|X1, .-, Xd—1)
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From conditional simulation to inference

» Suppose we now have parameters X € R" and data Y € R, and
Joint prior model my x. Seek the KR map S that pushes my x to

N0, Un4n)
» The KR map immediately has a block structure
SY(y)
S(y.x) = ,
(y X) [ SX(y'X)

which suggests two properties:
SX pushes my x to N(0,1,)

¢ — SX(y", €) pushes Txjy—, to N(0,1,)

@ Approximate the conditional density:

Txivoy = S¥(y", )N (0, 1,)
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From conditional simulation to inference

» Suppose we now have parameters X € R" and data Y € R™, and
Jjoint prior model my x. Seek the KR map S that pushes 7y x to

N (0, Imn)
» The KR map immediately has a block structure
SY(y)
S(y,x) = ,

which suggests two properties:
SX pushes my x to N(O,1,)

¢ — SX(y", €) pushes Txjy—, to N(0,1,)

© Sample the conditional distribution 7ArX|Y:y*:

invert gx(y*,x’) = ¢' for x' given &' ~ N (0, 1,)
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From conditional simulation to inference

» Suppose we now have parameters X € R" and data Y € R, and
Jjoint prior model my x. Seek the KR map S that pushes 7y x to

N(O, Inmin)
» The KR map immediately has a block structure
SY(y)
Sy, x) = ,
(y X) [ Sx(y,X)

which suggests two properties:
SX pushes my x to N(O,1,)

¢ — S*(y*, €) pushes myjy—, to N(0,15)

© Sample the conditional via a composed map T that pushes forward
Ty X 1O Ty |y—y+:

T(y,x) = SX(y", )" 0 SX(y.x)
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How to construct triangular maps?

Data-driven formulation: learning “maps from samples”

» Given a sample (x"),-"i1 ~ m: find each component function via

convex (wrt S¥) constrained minimization (here, for standard
Gaussian m):

1
. i : T ck 2 k
min D (7||S*n) < s EW[QS (x1:4)" — log 6kS (Xl:k)] Vk

» Approximate E,; given i.i.d. samples from m: KL minimization
equivalent to maximum likelihood estimation

M
~ 1 1 , .
Skecarg min — E <Skx’. 2 _log 8, S¥(x" . )
g SkESZIk M — 2 ( l.k) g Ok ( l.k)
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Example: data assimilation

How to solve sequential inference problems in dynamical systems,
where key density functions cannot be evaluated?

60°E 75° 90°E 105°E 120°E 135°E
50°N 50°N
45°N 45°N
40°N 40°N
35°N 35°N
30°N 30°N
25°N 25°N
80°E 90°E 100°E 110°E 120°E
[image: NCAR]
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Formalize as Bayesian filtering

» Nonlinear/non-Gaussian state-space model:
> Transition density 7z,|z, ,
» Observation density (likelihood) Ty, |z,

FTTTY
Y, Ys Yy

Yo Y,

» Focus on recursively approximating the filtering distribution:
TZ, Iyox ~ TZisr |yorss (Marginals of the full Bayesian solution)
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Problem setting

» Consider the filtering of state-space models with:

@ High-dimensional states

@ Challenging nonlinear dynamics

© Intractable transition kernels: can only obtain forecast samples, i.e.,
draws from Tz, .. |4,

@ Limited model evaluations, e.g., small ensemble sizes

@ Sparse and local observations
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Ensemble Kalman filter

» State-of-the-art results (in terms of tracking) are often obtained with
the ensemble Kalman filter (EnKF)

' o

ooog - Q,O-O '

N A \ Io \ 1

o©° e R O/5e '
RSO ¥

i o0 - .

s LT s :
Zp Y 01 N2k Yok Zi|Y o s

Bayesian inference

» Move samples via an affine transformation; no weights or resampling!
» Yet ultimately inconsistent: does not converge to the true posterior
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Ensemble Kalman filter

» State-of-the-art results (in terms of tracking) are often obtained with
the ensemble Kalman filter (EnKF)

forecast step
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Bayesian inference

» Move samples via an affine transformation; no weights or resampling!
» Yet ultimately inconsistent: does not converge to the true posterior

Can we improve and generalize the EnKF while preserving scalability?
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Assimilation step

At any assimilation time k, we have a Bayesian inference problem:

= \ /

4 //
Q ) \ Q\@,

X TX|Y=y*
prior posterior
» Ty is the forecast distribution on R”

> Ty|x is the likelihood of the observations Y € R
> Txjy—y+ IS the filtering distribution for a realization y* of the data

Goal: sample the posterior given only (few) prior samples x1, .. ., Xy
and the ability to simulate data y;|x;
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A likelihood-free inference algorithm with maps

Transport map ensemble filter
@ Compute forecast ensemble x1, ..., XM
© Generate samples (y;, x;) from Ty x with y; ~ Ty|x=y;
@ Build an estimator T of T

~

© Compute analysis ensemble as x = T(y;, x;) for i =1, ...

Marzouk ANSRE MURI Kickoff
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Estimator for the analysis map

» Recall the form of S:

SY(y)

Sx(y, X) ] ' Sﬁ Ty X = N(O |d+n)-

S(y.x) = [

» We propose a simple estimator T of T

?(y, X) = §X(y*, -)_1 o gx(y, X),

where S is a2 maximum likelihood estimator of S

» This is simply the “maps from samples” approach!
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Map parameterizations

M

Sk ecarg min Z( — log 8 S¥(x )>

Skesh 1
» Optimization is not needed for nonlinear separable parameterizations
of the form SK(x1.x) = g(x1.k_1) + axx (just linear regression)

» Connection to EnKF: a linear parameterization of Sk recovers a
particular form of EnKF with “perturbed observations”

» Choice of approximation space allows control of the bias and variance
of S

» Richer parameterizations yield less bias, but potentially higher variance
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Example: Lorenz-63

Simple example: three-dimensional Lorenz-63 system

dXi

— = Xo — X

dr 0( 2 1),
dXs

— = Xi(p—X3)— X
dr 1(P 3) 2
dXs

— = X1 X5 —BX

i 1X2 — BX3

v

Chaotic setting: p =28, 0 =10, 8 =28/3

Fully observed, with additive Gaussian observation noise
&~ N(O 22)
Assimilation interval At = 0.1

v

v

v

Results computed over 2000 assimilation cycles, following spin-up

» Map parameterizations: S*(x;.x) = Z,—Sk V;(x;), with W; = linear
+ {RBFs or sigmoids }
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Example: Lorenz-63

Mean “tracking” error vs. ensemble size and choice of map

0.9

? —A—EnKF
0.8 —O—Linear -
£a) Linear + 1 RBF
%3 0.7 —o—Linear + 2 RBF |1
= === Particle Filter
0.6 -
)
bo A
T 05 & 0
5]
>
<< 0.4
0.3 e ——————————
10 60100 200 400 600

Ensemble size M
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Example: Lorenz-63

What about comparison to the true Bayesian solution?

0.5 —r— T

—A—EnKF
—0—Linear
Linear + 1 RBF|
—o—Linear + 2 RBF
------- PF Std Error

0.4%

0.34.

A
TR

0.2}

0.1f

Average Frobenius covariance error

0 1
20 60100 200 400 600
Ensemble size M
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“Localize” the map in high dimensions

>

v

v

v

Marzouk

Regularize the estimator SofS by imposing sparsity, e.g.,

S'(x)
-~ §2(X1,X2)
Ut = G,
§4( X3,X4)

The sparsity of the kth component of S depends on the sparsity of
the marginal conditional function mx, x,., , (Xk[X1:k—1)

Localization heuristic: let each S depend on variables (x;)j<x that
are within a distance £ from x in state space.

Explicit link between sparsity of S and conditional independence in
non-Gaussian graphical models described in
[Inference via low-dimensional couplings, Spantini/Bigoni/M JMLR 2018]
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Lorenz-96 in chaotic regime (40-dimensional state)

» A hard test-case configuration [Bengtsson et al. 2003]:
dX; .
T; = (XJ‘+1*XJ‘_2)XJ'_1*XJ'+F, J:].,...,4O
Y, = X +¢;, Jj=135...,39
» F =8 (chaotic) and & ~ N(0,0.5) (small noise for PF)

» Time between observations: Ag,s = 0.4 (large)
» Results computed over 2000 assimilation cycles, following spin-up



Lorenz-96: “hard’ case

1.2 T
—A—EnKF

1.1 —0—Linear -
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m k - Var(é't)l/2
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Ensemble size M

» The nonlinear filter is =~ 25% more accurate in RMSE than EnKF
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Lorenz-96: “hard’ case

0.6%

—A—EnKF

—0— Linear i
Linear + 1 RBF

—0—Linear + 2 RBF||

0.55}

0.35F
o !
0.3L— 2 2 '
6010 200 400 600

Ensemble size M

Marzouk ANSRE MURI Kickoff 21 /36



Lorenz-96: tracking performance of the filter

Mean filter

assimilation cycle
assimilation cycle

10 20 30 40 10 20 30 40
dimension dimension

» Simple and and localized nonlinearities have significant impact
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Remarks and issues

» Nonlinear generalization of the EnKF: move the ensemble
members via local nonlinear transport maps, no weights or degeneracy

» Learn non-Gaussian features via nonlinear continuous transport and
convex optimization

» Choice of map basis and sparsity provide regularization
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Remarks and issues

Marzouk

Nonlinear generalization of the EnKF: move the ensemble
members via local nonlinear transport maps, no weights or degeneracy

Learn non-Gaussian features via nonlinear continuous transport and
convex optimization

Choice of map basis and sparsity provide regularization

In principle, inference is consistent as Sg is enriched and M — oc.
But what is a good choice of Sg for any fixed ensemble size M?

How to relate map structure/parameterization to the underlying
dynamics, observation operators, and data?

How well can these maps capture tails and extremes?
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Underlying question: how to learn maps?

The "ML way:" many normalizing/autoregressive “flows” are built from special
cases of triangular maps, and their compositions:
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Underlying question: how to learn maps?

The "ML way:" many normalizing/autoregressive “flows” are built from special
cases of triangular maps, and their compositions:

» NICE: Nonlinear independent component estimation [Dinh et al. 2015]

Sk(Xl ..... Xi) = ik (Xi<k) + Xk

> Inverse autoregressive flow [Dinh et al. 2017]

Sk, ..., xk) = (1 = ox(Xjck) )bk (Xi<k) + XkTk(Xick)

» Sum-of-squares polynomial flow [Jaini et al. 2019]
Xk P

Sk(Xl ..... Xk) = ak(Xi<k) +/ Z poly(t; a, k(xl<k)) dt
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Underlying question: how to learn maps?

The "ML way:" many normalizing/autoregressive “flows” are built from special
cases of triangular maps, and their compositions:

» NICE: Nonlinear independent component estimation [Dinh et al. 2015]

Sk(Xl ..... Xi) = ik (Xi<k) + Xk

> Inverse autoregressive flow [Dinh et al. 2017]

Sk, ..., xk) = (1 = ox(Xjck) )bk (Xi<k) + XkTk(Xick)

» Sum-of-squares polynomial flow [Jaini et al. 2019]
Xk P

Sk(Xl ..... Xk) = ak(Xi<k) +/ Z poly(t; a, k(xl<k)) dt

» Many ad hoc choices and challenging optimization problems ...
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Parameterizing monotone maps

Structure: Satisfy monotonicity constraint 9xS*(x1.x) > 0 Vxy.x

Existing methods
» Enforce at finite training samples 8,SK(x} ) >0fori=1,..., n

» Enforce by construction: e.g., SOS polynomial flows

Xk
Sk(xl:k) = ak(X<k) +/ br(X<k, t)2dt
0

Improved idea: Represent S via an invertible “rectifier”

Sk(Xl:k) = Ri(f)(x1:4) = f(X<k, 0) + /OXk 9(Okf (x<k, t))dt,

where g: R — Ry is bijective & smooth and f: R — R is unconstrained
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Parameterizing monotone maps

Rectification of f (1-D example)
For smooth f and bijective g: R — R+ (e.g., g(x) = log(1 + €¥))

S(x) =R(f)(x) := f(0) + /OX 9(0«f(t))dt,

—f(2)
— 0. f(x)
9(9:f(z))

05 0 05 5 2 2 15 -1 05 0 05
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Approximating monotone maps

Convert the constrained minimization to an unconstrained problem:

. 1 .
{S:gzlsnw} Ex ES(XL;()2 —log [0kS(x1:4)|| < mfln Tk o Ri(f)
d Li(f)

7(S)
Drawback: With this reparameterization, we lose convexity
Question: When will the objective still have “nice” properties?

Consider the space of functions
HYK(RF) == {f: R* — R such that [ |f(x)[? + |8 f(x)[>dx < o0}

Theorem [BZM]

Let m(x) < Cym(x) for some G < oo and m standard Gaussian. Then, for
g(x) = log(1 + exp(x)), Lx: H**(R¥) — R is continuous, bounded, and
has a unique global minimizer.
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Approximating monotone maps

» Mixture of Gaussians target density m(x)
» Approximate objective as Ek using n = 50 samples

» Evaluate Zk along segments connecting random initial maps (t = 0)
to critical points of gradient-based optimizer (t = 1)

0.2 0.4 0.6 0.8 1

"o 0.2 0.4 0.6 0.8 1 0

a(x) = log(1 + exp(x)) 9(x) = x

Takeaway: Smooth objective with a single minimizer = reliable training!
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Adaptive transport map (ATM) algorithm

Goal: Approximate f(x) given n i.i.d. samples from 7

Greedy enrichment procedure
> Look for sparse expansion f(x) = >, cp Ca¥a(X)
» Use tensor-product Hermite functions 9 (x) = Py, (x) exp(—[x[?/2)
» Add one element to set of active multi-indices A; at a time
» Restrict A+ to be downward closed

» Search for new features in the reduced margin of As

O A, Banana Funnel Cosine Ring

4 M £ A

B w0

2 ARM

1

L WO
01234 h
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Numerical example: mixture of Gaussians

3-dimensional mixture of 8 Gaussians with random weights
Learn map S = (S!, 52, S3) using n = 100 training samples
Compare ATM to non-adaptive procedure using total-order expansions

v

v

v

Negative log-likelihood

Training samples, n

True PDF Approximate PDF Log-like on test set

Takeaways: ATM finds estimators with number of features m to balance
bias and variance for each sample size n
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Numerical example: Lorenz-96 data

» 20-dimensional distribution for the state of the ODE at a fixed time
starting from a Gaussian initial condition

Negative log-likelihood

Number of parameters

910111213 1

Log-like and m vs n Sbarsity of S n= 3i6 Conditionél‘independenée

Takeaways:
» ATM implicitly discovers conditional independence structure in

» Natural semi-parametric method that gradually increases m with n
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Research plans

Broad area #1: high-dimensional conditional generative modeling and
likelihood-free inference using transport maps
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Research plans

Broad area #1: high-dimensional conditional generative modeling and
likelihood-free inference using transport maps

Will enable data-driven inference and prediction in chemical and material
systems, using both experimental data and simulation models.
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Research plans

Broad area #1: high-dimensional conditional generative modeling and
likelihood-free inference using transport maps

Research thrusts:
» Developing suitable map parameterizations and characterizing their
expressiveness. Adaptive representations/algorithms.

» Understanding implications of map parameterization on the
associated estimation (optimization) problems

» Sample complexity results

» Taking advantage of map structure implied by particular problems

» Sparsity, low rank (Brennan et al. 2020), multiscale behavior. . .

» How to parameterize maps to capture tail behavior and extreme
events? What loss/objective should be used to identify such maps?

» What about data that come from certain ODE or PDE systems?
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Research plans

Broad area #1: high-dimensional conditional generative modeling and
likelihood-free inference using transport maps

Research thrusts (cont.):

» Direct transformations of Gaussian (or, e.g., elliptical) reference
distributions versus joint-to-conditional transformations

» Some previous work on tails of triangular maps [Jaini et al. 2020].
Develop links to extreme value theory.

» Also, learning block-triangular maps in an adversarial framework
[Kovachki et al. 2021]
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Collaborative efforts

With Evan Reed and team:

» Chemical kinetic network models

» Consider joint distribution of chemical species concentrations or
atomic features, learned from molecular dynamics simulation + physical
constraints

» Predict unobserved species given limited observations

» Characterize and extrapolate temperature-dependent evolution:
reactions become rare as T decreases

With Vahid Tarokh and team:
» Extreme values in PDE systems

» Tails of triangular maps and links to (spatial) extreme value theory

» Generative stochastic models for PDEs with uncertain coefficients and
initial/boundary conditions

» Conditional sampling in these models
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Research plans

Broad area #2: model misspecification in generative modeling and
inference (collaboration with Jose Blanchet and team)

» In the misspecified Bayesian setting, posteriors can concentrate in
undesirable ways. Can we devise Bayesian procedures that are robust
to certain kinds of model misspecification?
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Research plans

Broad area #2: model misspecification in generative modeling and
inference (collaboration with Jose Blanchet and team)

» In the misspecified Bayesian setting, posteriors can concentrate in
undesirable ways. Can we devise Bayesian procedures that are robust
to certain kinds of model misspecification?

» Key results from Jose: links between classical regularized estimators
and distributionally robust optimization

» Apply these results to transport-based density estimation, e.g., with £;
penalties.

» How can approximation theoretic analysis of transport maps help
characterize misspecification of generative models?

» What are the implications for likelihood-free Bayesian inference?
Consider transport maps trained from synthetic/simulation data and
then applied to real/experimental data.

» How can we design nonparametric uncertainty sets appropriate for
conditional prediction?
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Conclusions

Thanks for your attention!
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